Selective vulnerability of dopaminergic neurons to microtubule depolymerization.

نویسندگان

  • Yong Ren
  • Wenhua Liu
  • Houbo Jiang
  • Qian Jiang
  • Jian Feng
چکیده

Parkinson disease (PD) is characterized by the specific degeneration of dopaminergic (DA) neurons in substantia nigra and has been linked to a variety of environmental and genetic factors. Rotenone, an environmental PD toxin, exhibited much greater toxicity to DA neurons in midbrain neuronal cultures than to non-DA neurons. The effect was significantly decreased by the microtubule-stabilizing drug taxol and mimicked by microtubule-depolymerizing agents such as colchicine or nocodazole. Microtubule depolymerization disrupted vesicular transport along microtubules and caused the accumulation of dopamine vesicles in the soma. This led to increased oxidative stress due to oxidation of cytosolic dopamine leaked from vesicles. Inhibition of dopamine metabolism significantly reduced rotenone toxicity. Thus, our results suggest that microtubule depolymerization induced by PD toxins such as rotenone plays a key role in the selective death of dopaminergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation.

Mitogen-activated protein kinases, originally known as microtubule-associated protein (MAP) kinases, are activated in response to a variety of stimuli. Here we report that microtubule-depolymerizing agents such as colchicine or nocodazole induced strong activation of MAP kinases including JNK, ERK, and p38. This effect was markedly attenuated by parkin, whose mutations are linked to Parkinson d...

متن کامل

Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons.

Parkinson disease is characterized by the selective degeneration of dopaminergic (DA) neurons in substantia nigra. Long term epidemiological studies have implicated exposure to agricultural pesticides as a significant risk factor. Systemic administration of rotenone, a widely used pesticide, causes selective degeneration of nigral DA neurons and Parkinson disease-like symptoms in rats. Our prev...

متن کامل

Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism.

Systemic administration of rotenone, a widely used pesticide, causes selective degeneration of nigral dopaminergic (DA) neurons and Parkinson's disease-like symptoms in animal models. Our previous study has shown that the microtubule-depolymerizing activity of rotenone plays a critical role in its selective toxicity on tyrosine hydroxylase-positive (TH+) neurons in rat embryonic midbrain neuron...

متن کامل

Microtubule: a common target for parkin and Parkinson's disease toxins.

Parkinson's disease (PD) is characterized by the selective loss of nigral dopaminergic (DA) neurons, which have long axons enriched with microtubules. Depolymerization of microtubules by PD toxins such as rotenone disrupts vesicular transport. The ensuing accumulation of vesicles in the cell body leads to increased cytosolic concentration of dopamine due to leakage of the vesicles. Elevated oxi...

متن کامل

Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism.

As a major co-morbidity of Parkinson's disease (PD), depression is associated with the loss of serotonergic neurons. Our recent study has shown that midbrain dopaminergic neurons are particularly vulnerable to microtubule-depolymerizing agents including rotenone, an environmental toxin linked to PD. Here we show that rotenone also selectively killed serotonergic neurons in midbrain neuronal cul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 40  شماره 

صفحات  -

تاریخ انتشار 2005